Copied to
clipboard

G = C24.379C23order 128 = 27

219th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.379C23, C23.565C24, C22.3392+ 1+4, C22.2542- 1+4, (C22×C4)⋊15Q8, C23.69(C2×Q8), C23⋊Q8.18C2, (C22×C4).170C23, (C2×C42).629C22, (C23×C4).439C22, C2.11(C232Q8), C23.7Q8.62C2, C23.Q8.25C2, C22.139(C22×Q8), C23.34D4.24C2, (C22×Q8).170C22, C23.83C2373C2, C23.78C2335C2, C23.67C2376C2, C2.54(C22.32C24), C23.63C23122C2, C2.C42.279C22, C2.65(C22.36C24), C2.26(C23.41C23), C2.42(C23.37C23), (C2×C4).169(C2×Q8), (C4×C22⋊C4).74C2, (C2×C4).185(C4○D4), (C2×C4⋊C4).386C22, C22.432(C2×C4○D4), (C2×C22⋊C4).522C22, SmallGroup(128,1397)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.379C23
C1C2C22C23C22×C4C2.C42C23.67C23 — C24.379C23
C1C23 — C24.379C23
C1C23 — C24.379C23
C1C23 — C24.379C23

Generators and relations for C24.379C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=f2=c, g2=b, ab=ba, ac=ca, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >

Subgroups: 420 in 212 conjugacy classes, 96 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×Q8, C4×C22⋊C4, C23.7Q8, C23.34D4, C23.63C23, C23.67C23, C23⋊Q8, C23.78C23, C23.Q8, C23.83C23, C24.379C23
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.37C23, C22.32C24, C22.36C24, C232Q8, C23.41C23, C24.379C23

Smallest permutation representation of C24.379C23
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(2 12)(4 10)(5 62)(6 33)(7 64)(8 35)(14 42)(16 44)(17 29)(18 58)(19 31)(20 60)(22 50)(24 52)(26 54)(28 56)(30 46)(32 48)(34 40)(36 38)(37 61)(39 63)(45 57)(47 59)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45 3 47)(2 48 4 46)(5 16 7 14)(6 15 8 13)(9 19 11 17)(10 18 12 20)(21 31 23 29)(22 30 24 32)(25 33 27 35)(26 36 28 34)(37 41 39 43)(38 44 40 42)(49 59 51 57)(50 58 52 60)(53 63 55 61)(54 62 56 64)
(1 55 51 43)(2 56 52 44)(3 53 49 41)(4 54 50 42)(5 46 36 58)(6 47 33 59)(7 48 34 60)(8 45 35 57)(9 25 21 13)(10 26 22 14)(11 27 23 15)(12 28 24 16)(17 61 29 37)(18 62 30 38)(19 63 31 39)(20 64 32 40)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (2,12)(4,10)(5,62)(6,33)(7,64)(8,35)(14,42)(16,44)(17,29)(18,58)(19,31)(20,60)(22,50)(24,52)(26,54)(28,56)(30,46)(32,48)(34,40)(36,38)(37,61)(39,63)(45,57)(47,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,3,47)(2,48,4,46)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20)(21,31,23,29)(22,30,24,32)(25,33,27,35)(26,36,28,34)(37,41,39,43)(38,44,40,42)(49,59,51,57)(50,58,52,60)(53,63,55,61)(54,62,56,64), (1,55,51,43)(2,56,52,44)(3,53,49,41)(4,54,50,42)(5,46,36,58)(6,47,33,59)(7,48,34,60)(8,45,35,57)(9,25,21,13)(10,26,22,14)(11,27,23,15)(12,28,24,16)(17,61,29,37)(18,62,30,38)(19,63,31,39)(20,64,32,40)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (2,12)(4,10)(5,62)(6,33)(7,64)(8,35)(14,42)(16,44)(17,29)(18,58)(19,31)(20,60)(22,50)(24,52)(26,54)(28,56)(30,46)(32,48)(34,40)(36,38)(37,61)(39,63)(45,57)(47,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,3,47)(2,48,4,46)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20)(21,31,23,29)(22,30,24,32)(25,33,27,35)(26,36,28,34)(37,41,39,43)(38,44,40,42)(49,59,51,57)(50,58,52,60)(53,63,55,61)(54,62,56,64), (1,55,51,43)(2,56,52,44)(3,53,49,41)(4,54,50,42)(5,46,36,58)(6,47,33,59)(7,48,34,60)(8,45,35,57)(9,25,21,13)(10,26,22,14)(11,27,23,15)(12,28,24,16)(17,61,29,37)(18,62,30,38)(19,63,31,39)(20,64,32,40) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(2,12),(4,10),(5,62),(6,33),(7,64),(8,35),(14,42),(16,44),(17,29),(18,58),(19,31),(20,60),(22,50),(24,52),(26,54),(28,56),(30,46),(32,48),(34,40),(36,38),(37,61),(39,63),(45,57),(47,59)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45,3,47),(2,48,4,46),(5,16,7,14),(6,15,8,13),(9,19,11,17),(10,18,12,20),(21,31,23,29),(22,30,24,32),(25,33,27,35),(26,36,28,34),(37,41,39,43),(38,44,40,42),(49,59,51,57),(50,58,52,60),(53,63,55,61),(54,62,56,64)], [(1,55,51,43),(2,56,52,44),(3,53,49,41),(4,54,50,42),(5,46,36,58),(6,47,33,59),(7,48,34,60),(8,45,35,57),(9,25,21,13),(10,26,22,14),(11,27,23,15),(12,28,24,16),(17,61,29,37),(18,62,30,38),(19,63,31,39),(20,64,32,40)]])

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4N4O···4V
order12···22244444···44···4
size11···14422224···48···8

32 irreducible representations

dim11111111112244
type++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC24.379C23C4×C22⋊C4C23.7Q8C23.34D4C23.63C23C23.67C23C23⋊Q8C23.78C23C23.Q8C23.83C23C22×C4C2×C4C22C22
# reps11112222224831

Matrix representation of C24.379C23 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
10000000
34000000
00400000
00040000
00001000
00002400
00001040
00002301
,
30000000
42000000
00010000
00400000
00001030
00000134
00000040
00000004
,
22000000
03000000
00300000
00020000
00003200
00001200
00000001
00000010
,
20000000
02000000
00400000
00040000
00002000
00004300
00000020
00000003

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,1,2,0,0,0,0,0,4,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[3,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0,4,0,4],[2,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3] >;

C24.379C23 in GAP, Magma, Sage, TeX

C_2^4._{379}C_2^3
% in TeX

G:=Group("C2^4.379C2^3");
// GroupNames label

G:=SmallGroup(128,1397);
// by ID

G=gap.SmallGroup(128,1397);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,456,758,723,352,185,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=f^2=c,g^2=b,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽